Mercoledì 19 marzo alle ore 16.00, nell'ambito dei Junior Seminars dei dottorandi di Matematica, Simone Marrocco (dottorando, Università degli Studi Roma Tre) terrà il seminario dal titolo "Hamiltonian Methods for the Kirchhoff Equation".
Abstract:
The Kirchhoff equation with periodic boundary conditions provides a beautiful model for describing the transverse oscillations of a nonlinear elastic medium. Since its introduction in 1876, it has continued to fascinate and challenge mathematicians from all over the world.
In this presentation, we analyze its properties, highlighting both its physical motivations and mathematical implications. In particular, we discuss key theoretical questions, such as local well-posedness and the lifespan of solutions, emphasizing the challenges posed by its quasi-linear structure.
A central focus of our analysis is its Hamiltonian formulation, which provides a powerful theoretical framework for understanding the dynamics of solutions. Our goal is to offer a clear overview of the open challenges and the main techniques used to tackle them, with particular emphasis on the so-called normal form techniques.
Il seminario è organizzato dai dottorandi di Matematica e si svolgerà in presenza presso il Dipartimento di Matematica e Fisica, Lungotevere Dante 476, aula M3.
Link identifier #identifier__120469-1Sito web