Tè di Matematica - The Kolmogorov set in Hamiltonian dynamics

Link identifier archive #link-archive-thumb-soap-19709
Tè di Matematica - The Kolmogorov set in Hamiltonian dynamics
Mercoledì 10 dicembre 2025 alle ore 16:00, presso il Dipartimento di Matematica e Fisica (Lungotevere Dante 476, Aula M1), il pof. Luigi Chierchia (Università Roma Tre), nell'ambito dei Link identifier #identifier__169578-1Tè di Matematica, terrà un seminario dal titolo "The Kolmogorov set in Hamiltonian dynamics".

Abstract: In frictionless phenomena, such as planetary dynamics, regular motions (periodic and quasi-periodic) have been observed and studied since ancient times (Ptolemy). In particular, in the nineteenth century, mathematicians and astronomers engaged in an intense debate over the convergence of formal power-series expansions of quasi-periodic solutions of nearly integrable systems (for example, Poincaré was convinced of their generic divergence, while Weierstrass argued in favour of convergence).
A crucial step was taken by Kolmogorov in 1954, when he proved convergence of such series (under suitable assumptions) and stated (without proof) that the set of quasi-periodic solutions of a general nearly integrable Hamiltonian system (the “Kolmogorov set”) fills compact regions of its phase space up to a small exceptional set, whose Lebesgue measure tends to zero as the perturbation parameter goes to zero.

The main question then becomes: what is, generically, the asymptotic measure of the Kolmogorov set (as the perturbation parameter goes to zero)? 

In this Tè di matematica seminar, I will discuss, in general terms, some of these issues, from their (modern) origins up to the research
frontier. 
 

Link identifier #identifier__28679-2Locandina
Link identifier #identifier__148716-1Link identifier #identifier__70806-2Link identifier #identifier__160942-3Link identifier #identifier__133172-4